

Borchert • Golmie • Rouil • Su – Draft 1.0

The algorithms in the
GMPLS Lightwave Agile

Switching Simulator
(GLASS)

Version: Draft 1.0

 Introduction

Borchert • Golmie • Rouil • Su – Draft 1.0 i

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 ARCHITECTURE .. 1

2.1 CLASS DESCRIPTION..2

2.2 CONFIGURATION OF ALGORITHMS ...3

3 HOW TO CREATE A NEW ALGORITHM... 4

3.1 ROUTING ALGORITHM ...4

3.1.1 The parameters .. 4

3.1.2 Execution ... 6

3.2 WAVELENGTH ALGORITHM ... 6

3.2.1 The Parameters.. 6

3.2.2 Execution ... 6

4 DML SCHEMAS OF EXISTING ALGORITHMS... 7

5 REFERENCES .. 8

 Introduction

Borchert • Golmie • Rouil • Su – Draft 1.0 1

1 INTRODUCTION

The goal of GLASS is to simulate a network and help in the validation of protocols and algorithms.

The algorithms play an important role in the efficiency of a network. GLASS provides an interface to

make easy the implementation and the simulation of algorithms. The first part presents the structure

of the algorithm interfaces, and the second part shows the tools that have been created to help the

implementation of a new algorithm.

2 ARCHITECTURE

The algorithms in GLASS are entities that can be accessible from any node in the network. They also

have the possibility to access any information of the network components. Currently the execution of

an algorithm does not take time in the simulation. Research is done to include a computation delay

that will be configurable by the user.

GLASS uses the same interface for all the algorithm but considers three types of algorithms:

• Routing algorithms: Algorithms that are of type Routing compute one or more routes

between a source and a destination according to a quality of service.

• Wavelength algorithms: Their goal is to create a lightpath along a specific route to

carry information depending on a quality of service (bandwidth, maximum delay…).

• Routing and wavelength algorithms (RWA): These algorithms are computed the route

and the wavelength at the same time.

This chapter explains in details the implementation of the algorithms.

 Architecture

Borchert • Golmie • Rouil • Su – Draft 1.0 2

2.1 CLASS DESCRIPTION

Figure 1: UML diagram of algorithms

The package gov.nist.antd.optical.algorithm contains the basic classes for algorithm. It is composed

of three classes:

The class AlgorithmException is an exception that is thrown during the execution of an algorithm

when an error occurs.

The class AlgorithmContainer represents a global container for a specific network that stores the list

of available algorithms. A static method allows any entity to retrieve an algorithm and to call its

execution.

 Architecture

Borchert • Golmie • Rouil • Su – Draft 1.0 3

The interface Algorithm contains the generic methods that are necessary for configuring and calling

the execution of algorithm. This interface provides two types of execute methods. On one hand, the

parameters are of type Vector and on the other hand of type Array. This is to be more flexible is the

implementation of algorithms and on the protocols that will call the algorithms. The method

execute(…) is called to request a route or a path on the OpticalConnection [1] objects given as

parameter.

In addition to this, the package gov.nist.antd.merlin.algorithm contains the class

AlgorithmTemplate. This class has been created to make easier and faster the implementation of a

new algorithm. By providing the basic configuration, the user focuses only on the implementation of

the algorithm. All the algorithms provided in GLASS extend this template. It able the user to

configure the name of the algorithm and an attribute “debug” that is used to print additional debug

information.

2.2 CONFIGURATION OF ALGORITHMS

By using a DML file, the configuration of the algorithms is done after the creation of the topology.

The configuration of the algorithm must be done in the section “AlgorithmContainer” of the DML

file.

The minimum configuration requires the name of the algorithm, name that will be used during the

simulation, and the class name to use.

Example:

Figure 2: Example of DML configuration

This example wil l create two entries in the AlgorithmContainer. One for an algorithm called

ShortestPathDistance and one for BestFit using the specified class.

AlgorithmContainer [
algorithm [
name ShortestPathDistance
use gov.nist.antd.merlin.algorithm.route.shortestpath.distance.ShortestPathDistance
debug true

]
algorithm [
name BestFit
use gov.nist.antd.merlin.algorithm.wavelength.bestfit.BestFit

]
]

 How to create a new algorithm

Borchert • Golmie • Rouil • Su – Draft 1.0 4

By using the GLASS Topology and Simulation Creator (GLASS-TSC), the user can add, remove,

and modify the algorithms.

3 HOW TO CREATE A NEW ALGORITHM

There are two parts that must be considered when creating an algorithm in GLASS:

- The configuration of the algorithm and

- The running of the algorithm.

In GLASS the terminology “execute an algorithm” means that we request a route or a path on

specific connection object. If an algorithm needs to compute the backup routes of all the links for

protection, then we don’t execute the algorithm but we “configure” it. The difference is that the

configuration is done before the simulation runs.

3.1 ROUTING ALGORITHM

This section explains what are the important steps to create a routing algorithm.

The routing algorithm has for objective to compute one or more possible routes for an

OpticalConnection.

3.1.1 THE PARAMETERS

When a routing algorithm is executed, one of the execute(…) methods will be executed. The only

difference is the way of accessing the elements.

The first parameter contains one or more OpticalConnection instances that need to have a route.

Figure 3 shows the implementation of the class OpticalConnection.

 How to create a new algorithm

Borchert • Golmie • Rouil • Su – Draft 1.0 5

Figure 3: UML diagram of the class OpticalConnection

The OpticalConnection objects given as parameter may already have a route. In this case, it is more

secure to call the method resetRoutes() of the object to clean the previous results (but not the path if

existing). It is up to the resources management to clean the paths before they are recomputed.

The constraints of the route are located in the QualityofService located in the connection object, like

the source and destination node.

The return value of the algorithm is the Vector or Array of the routes given in parameter.

 How to create a new algorithm

Borchert • Golmie • Rouil • Su – Draft 1.0 6

3.1.2 EXECUTION

During the execution, the algorithm may find an error. In this case, it should throw an

AlgorithmException. If no route can be found, this is not consider as an error and the algorithm

must leave the route object as it is without any possible routes.

When the algorithm finds a route, it must add it in the list of possible routes of the

OpticalConnection. The internal structure of the possible routes is an array of Vector. Each Vector

contains one or more PtPBundle [1]. The algorithm can follow the internal structure but GLASS

provides easy methods to convert lists of links or nodes into the internal structure. These methods are

integrated to the OpticalConnection and also in the util ity classes [3].

The return value of a routing algorithm must be the list of OpticalRoutes, whether a route has been

found or not.

The way the algorithm uses the framework is free to the developer and in the case of the algorithms

provided in GLASS, we create a graph out of the net and then run a regular algorithm (for example

ShortestPathDistance). See the package gov.nist.antd.merlin.protocol.routing.util for more

information [3].

3.2 WAVELENGTH ALGORITHM

The wavelength algorithm is the second step for the creation of the connection. Once the routing

algorithm has computed list of possible routes, the wavelength algorithm tries to compute the

lightpath.

3.2.1 THE PARAMETERS

The parameters of the wavelength assignment are the same has for the routing algorithm. The list of

OpticalConnection contains the connections that need a lightpath.

3.2.2 EXECUTION

The wavelength algorithm should make sure that the connection has already some possible routes

available. If there is no possible route in an OpticalConnection then the wavelength should not do

anything. It also needs to check if there is already a path in this given connection then it must free the

resources used. To do so, it can call the resetSwitches () of the optical path.

 DML schemas of existing algorithms

Borchert • Golmie • Rouil • Su – Draft 1.0 7

The wavelength algorithm does not need to care about the setting of the switches along the new path.

The caller of the algorithm should do it. This allows instantaneous set-up of the lightpath or dynamic

set-up [1].

The algorithm must create a path according to a quality of service. The algorithm must be concerned

about the capabilities of the switches along the path. Some may not have wavelength conversion.

Some links may also not have enough bandwidth.

If no path can be found, the algorithm does not have to modify the OpticalConnection because a

route without path is consider as a failed connection.

4 DML SCHEMAS OF EXISTING ALGORITHMS

algorithm [
name ShortestPathDistance
use

gov.nist.antd.merlin.algorithm.route.shortestpath.
distance.ShortestPathDistance
debug %S1

]

Configuration for the
ShortestPathDistance routing
algorithm.
Attribute debug is used for
extra information (default =
false).

algorithm [
name ShortestPathDistanceSRLG
use

gov.nist.antd.merlin.algorithm.route.shortestpath.
srlg.ShortestPathSRLG
debug $S1

]

Configuration for the
ShortestPathSRLG routing
algorithm.
Attribute debug is used for
extra information (default =
false).

algorithm [
name KShortestPath
use

gov.nist.antd.merlin.algorithm.route.shortestpath.
k.KspDisjoint
debug $S1
k $I1

]

Configuration for the
KshortestPathDistance
algorithm.
Attribute debug is used for
extra information (default =
false).
Attribute k indicates the
number of possible routes
must be searched (default
=1).

algorithm [
name BestFit
use

gov.nist.antd.merlin.algorithm.wavelength.bestfit.
BestFit
debug $S1

]

Configuration for the
BestFit wavelength
assignment algorithm.
Attribute debug is used for
extra information (default =
false).

 References

Borchert • Golmie • Rouil • Su – Draft 1.0 8

5 REFERENCES

[1] Connection, Route and Path in GLASS

By NIST/ANTD

[2] GMPLS Lightwave Agile Switching Simulator – Topology and Simulation Creator

(GLASS-TSC)

By NIST/ANTD

[3] Utils in the GMPLS Lightwave Agile Switching simulator

By NIST/ANTD

